pdstools.utils.streamlit_utils ============================== .. py:module:: pdstools.utils.streamlit_utils Functions --------- .. autoapisummary:: pdstools.utils.streamlit_utils.cached_sample pdstools.utils.streamlit_utils.cached_datamart pdstools.utils.streamlit_utils.import_datamart pdstools.utils.streamlit_utils.from_uploaded_file pdstools.utils.streamlit_utils.from_file_path pdstools.utils.streamlit_utils.model_selection_df pdstools.utils.streamlit_utils.filter_dataframe pdstools.utils.streamlit_utils.model_and_row_counts pdstools.utils.streamlit_utils.configure_predictor_categorization pdstools.utils.streamlit_utils.convert_df pdstools.utils.streamlit_utils.st_get_latest_pdstools_version Module Contents --------------- .. py:function:: cached_sample() .. py:function:: cached_datamart(**kwargs) .. py:function:: import_datamart(extract_pyname_keys: bool) .. py:function:: from_uploaded_file(extract_pyname_keys, codespaces) .. py:function:: from_file_path(extract_pyname_keys, codespaces) .. py:function:: model_selection_df(df: polars.LazyFrame, context_keys: list) .. py:function:: filter_dataframe(df: polars.LazyFrame, schema: Optional[dict] = None, queries=[]) -> polars.LazyFrame Adds a UI on top of a dataframe to let viewers filter columns :param df: Original dataframe :type df: pl.DataFrame :returns: The filtered LazyFrame :rtype: pl.LazyFrame .. py:function:: model_and_row_counts(df: pdstools.utils.types.ANY_FRAME) Returns unique model id count and row count from a dataframe :param df: The input dataframe :type df: Union[pl.DataFrame, pl.LazyFrame] :returns: unique model count row count :rtype: Tuple[int, int] .. py:function:: configure_predictor_categorization() .. py:function:: convert_df(df) .. py:function:: st_get_latest_pdstools_version()