pdstools.valuefinder.Plots ========================== .. py:module:: pdstools.valuefinder.Plots Attributes ---------- .. autoapisummary:: pdstools.valuefinder.Plots.logger pdstools.valuefinder.Plots.COLORSCALE_TYPES pdstools.valuefinder.Plots.Figure pdstools.valuefinder.Plots.T pdstools.valuefinder.Plots.P Classes ------- .. autoapisummary:: pdstools.valuefinder.Plots.Plots Module Contents --------------- .. py:data:: logger .. py:data:: COLORSCALE_TYPES .. py:data:: Figure .. py:data:: T .. py:data:: P .. py:class:: Plots(vf: pdstools.valuefinder.ValueFinder.ValueFinder) Bases: :py:obj:`pdstools.utils.namespaces.LazyNamespace` .. py:attribute:: dependencies :value: ['plotly'] .. py:attribute:: vf .. py:method:: funnel_chart(by: str, query: Optional[pdstools.utils.types.QUERY] = None, return_df: Literal[False] = False) -> Figure funnel_chart(by: str, query: Optional[pdstools.utils.types.QUERY] = None, return_df: Literal[True] = True) -> polars.LazyFrame .. py:method:: propensity_distribution(sample_size: int = 10000) -> Figure .. py:method:: propensity_threshold(sample_size: int = 10000, stage='Eligibility') -> Figure .. py:method:: _get_thresholds(thresholds: Optional[Iterable[float]] = None, quantiles: Optional[Iterable[float]] = None, default: Optional[Iterable[float]] = None) -> Iterable[float] .. py:method:: pie_charts(*, thresholds: Optional[Iterable[float]] = None, quantiles: Optional[Iterable[float]] = None, rounding: int = 3) .. py:method:: distribution_per_threshold(*, thresholds: Optional[Iterable[float]] = None, quantiles: Optional[Iterable[float]] = None, rounding: int = 3)