pdstools.valuefinder.ValueFinder ================================ .. py:module:: pdstools.valuefinder.ValueFinder Classes ------- .. autoapisummary:: pdstools.valuefinder.ValueFinder.ValueFinder Module Contents --------------- .. py:class:: ValueFinder(df: polars.LazyFrame, *, query: Optional[pdstools.utils.types.QUERY] = None, n_customers: Optional[int] = None, threshold: Optional[float] = None) Analyze the Value Finder dataset for detailed insights .. py:attribute:: df :type: polars.LazyFrame .. py:attribute:: n_customers :type: int .. py:attribute:: nbad_stages :value: ['Eligibility', 'Applicability', 'Suitability', 'Arbitration'] .. py:attribute:: aggregates .. py:attribute:: plot .. py:method:: from_ds_export(filename: Optional[str] = None, base_path: Union[os.PathLike, str] = '.', *, query: Optional[pdstools.utils.types.QUERY] = None, n_customers: Optional[int] = None, threshold: Optional[float] = None) :classmethod: .. py:method:: from_dataflow_export(files: Union[Iterable[str], str], *, query: Optional[pdstools.utils.types.QUERY] = None, n_customers: Optional[int] = None, threshold: Optional[float] = None, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: Union[os.PathLike, str] = 'cache') :classmethod: .. py:method:: set_threshold(new_threshold: Optional[float] = None) .. py:property:: threshold .. py:method:: save_data(path: Union[os.PathLike, str] = '.') -> Optional[pathlib.Path] Cache the pyValueFinder dataset to a Parquet file :param path: Where to place the file :type path: str :returns: The paths to the model and predictor data files :rtype: (Optional[Path], Optional[Path])