pdstools.adm.Reports¶
Classes¶
Module Contents¶
- class Reports(datamart: pdstools.adm.ADMDatamart.ADMDatamart)¶
Bases:
pdstools.utils.namespaces.LazyNamespace
- Parameters:
datamart (pdstools.adm.ADMDatamart.ADMDatamart)
- dependencies = ['yaml']¶
- dependency_group = 'healthcheck'¶
- datamart¶
- model_reports(model_ids: List[str], *, name: str | None = None, title: str = 'ADM Model Report', subtitle: str = '', output_dir: os.PathLike | None = None, only_active_predictors: bool = False, output_type: str = 'html', keep_temp_files: bool = False, verbose: bool = False, progress_callback: Callable[[int, int], None] | None = None, model_file_path: os.PathLike | None = None, predictor_file_path: os.PathLike | None = None) pathlib.Path ¶
Generates model reports.
- Parameters:
model_ids (List[str]) – The list of model IDs to generate reports for.
name (str, optional) – The (base) file name of the report.
title (str, optional) – Title top put in the report, uses a default string if not given.
subtitle (str, optional) – Subtitle top put in the report, empty if not given.
output_dir (Union[str, Path, None], optional) – The directory for the output. If None, uses current working directory.
only_active_predictors (bool, default=False) – Whether to only include active predictor details.
output_type (str, default='html') – The type of the output file (e.g., “html”, “pdf”).
keep_temp_files (bool, optional) – If True, the temporary directory with temp files will not be deleted after report generation.
verbose (bool, optional) – If True, prints detailed logs during execution.
progress_callback (Callable[[int, int], None], optional) – A callback function to report progress. Used only in the Streamlit app. The function should accept two integers: the current progress and the total.
model_file_path (Union[str, Path, None], optional) – Optional name of the actual model data file, so it does not get copied
predictor_file_path (Union[str, Path, None], optional) – Optional name of the actual predictor data file, so it does not get copied
- Returns:
The path to the generated report file.
- Return type:
Path
- Raises:
ValueError – If there’s an error in report generation or invalid parameters.
FileNotFoundError – If required files are not found.
subprocess.SubprocessError – If there’s an error in running external commands.
- health_check(name: str | None = None, title: str = 'ADM Model Overview', subtitle: str = '', output_dir: os.PathLike | None = None, *, query: pdstools.utils.types.QUERY | None = None, output_type: str = 'html', keep_temp_files: bool = False, verbose: bool = False, model_file_path: os.PathLike | None = None, predictor_file_path: os.PathLike | None = None, prediction_file_path: os.PathLike | None = None) pathlib.Path ¶
Generates Health Check report based on the provided parameters.
- Parameters:
name (str, optional) – The (base) file name of the report.
title (str, optional) – Title top put in the report, uses a default string if not given.
subtitle (str, optional) – Subtitle top put in the report, empty if not given.
query (QUERY, optional) – Optional extra filter on the datamart data
output_dir (Union[str, Path, None], optional) – The directory for the output. If None, uses current working directory.
output_type (str, default='html') – The type of the output file (e.g., “html”, “pdf”).
keep_temp_files (bool, optional) – If True, the temporary directory with temp files will not be deleted after report generation.
verbose (bool, optional) – If True, prints detailed logs during execution.
model_file_path (Union[str, Path, None], optional) – Optional name of the actual model data file, so it does not get copied
predictor_file_path (Union[str, Path, None], optional) – Optional name of the actual predictor data file, so it does not get copied
prediction_file_path (Union[str, Path, None], optional) – Optional name of the actual predictions data file, so it does not get copied
- Returns:
The path to the generated report file.
- Return type:
Path
- Raises:
ValueError – If there’s an error in report generation or invalid parameters.
FileNotFoundError – If required files are not found.
subprocess.SubprocessError – If there’s an error in running external commands.
- static _get_output_filename(name: str | None, report_type: str, model_id: str | None = None, output_type: str = 'html') str ¶
Generate the output filename based on the report parameters.
- static _copy_quarto_file(qmd_file: str, temp_dir: pathlib.Path) None ¶
Copy the report quarto file to the temporary directory.
- Parameters:
qmd_file (str)
temp_dir (pathlib.Path)
- Return type:
None
- static _write_params_files(temp_dir: pathlib.Path, params: Dict = {}, project: Dict = {'type': 'default'}, analysis: Dict = {}) None ¶
Write parameters to a YAML file.
- Parameters:
temp_dir (pathlib.Path)
params (Dict)
project (Dict)
analysis (Dict)
- Return type:
None
- static run_quarto(qmd_file: str, output_filename: str, output_type: str = 'html', params: Dict = {}, project: Dict = {'type': 'default'}, analysis: Dict = {}, temp_dir: pathlib.Path = Path('.'), verbose: bool = False) int ¶
Run the Quarto command to generate the report.
- excel_report(name: pathlib.Path | str = Path('Tables.xlsx'), predictor_binning: bool = False, query: pdstools.utils.types.QUERY | None = None) pathlib.Path | None ¶
Export aggregated data to an Excel file. This method exports the last snapshots of model_data, predictor summary, and optionally predictor_binning data to separate sheets in an Excel file. If a specific table is not available, it will be skipped without causing the export to fail.
- Parameters:
name (Union[Path, str], optional) – The path where the Excel file will be saved. Defaults to Path(“Tables.xlsx”).
predictor_binning (bool, optional) – If True, include predictor_binning data in the export. This is the last snapshot of the raw data, so it can be big. Defaults to False.
query (Optional[pdstools.utils.types.QUERY])
- Returns:
The path to the created Excel file if the export was successful, None if no data was available to export.
- Return type:
Union[Path, None]