pdstools.decision_analyzer.plots¶
Classes¶
Functions¶
|
|
|
|
|
Module Contents¶
- class Plot(decision_data)¶
- _decision_data¶
- threshold_deciles(thresholding_name, return_df=False)¶
- sensitivity(win_rank: int = 1, hide_priority=True, limit_xaxis_range=True, return_df=False, reference_group=None)¶
- Parameters:
win_rank (int)
- global_winloss_distribution(level, win_rank, return_df=False)¶
- propensity_vs_optionality(stage='Arbitration', return_df=False)¶
- action_variation(stage='Final', return_df=False)¶
- trend_chart(stage: str, scope: str, return_df=False) Tuple[plotly.graph_objects.Figure, str | None] ¶
- decision_funnel(scope: str, NBADStages_Mapping: dict, additional_filters: polars.Expr | List[polars.Expr] | None = None, return_df=False)¶
- filtering_components(stages: List[str], top_n, AvailableNBADStages, additional_filters: polars.Expr | List[polars.Expr] | None = None, return_df=False)¶
- Parameters:
stages (List[str])
additional_filters (Optional[Union[polars.Expr, List[polars.Expr]]])
- distribution(df: polars.LazyFrame, scope: str, breakdown: str, metric: str = 'Decisions', horizontal=False)¶
- prio_factor_boxplots(reference: polars.Expr | List[polars.Expr] | None = None, sample_size=10000, return_df=False) Tuple[plotly.graph_objects.Figure, str | None] ¶
- Parameters:
reference (Optional[Union[polars.Expr, List[polars.Expr]]])
- Return type:
Tuple[plotly.graph_objects.Figure, Optional[str]]
- rank_boxplot(reference: polars.Expr | List[polars.Expr] | None = None, return_df=False)¶
- Parameters:
reference (Optional[Union[polars.Expr, List[polars.Expr]]])
- optionality_per_stage(return_df=False)¶
- optionality_trend(df: polars.LazyFrame, NBADStages_Mapping, return_df=False)¶
- Parameters:
df (polars.LazyFrame)
- offer_quality_piecharts(df: polars.LazyFrame, propensityTH, NBADStages_FilterView, NBADStages_Mapping, return_df=False)¶
- Parameters:
df (polars.LazyFrame)