pdstools.valuefinder.ValueFinder¶
Classes¶
Analyze the Value Finder dataset for detailed insights  | 
Module Contents¶
- class ValueFinder(df: polars.LazyFrame, *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None)¶
 Analyze the Value Finder dataset for detailed insights
- Parameters:
 
- df: polars.LazyFrame¶
 
- nbad_stages = ['Eligibility', 'Applicability', 'Suitability', 'Arbitration']¶
 
- aggregates¶
 
- plot¶
 
- classmethod from_ds_export(filename: str | None = None, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None)¶
 - Parameters:
 filename (Optional[str])
base_path (Union[os.PathLike, str])
query (Optional[pdstools.utils.types.QUERY])
n_customers (Optional[int])
threshold (Optional[float])
- classmethod from_dataflow_export(files: Iterable[str] | str, *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: os.PathLike | str = 'cache')¶
 
- property threshold¶
 
- save_data(path: os.PathLike | str = '.') pathlib.Path | None¶
 Cache the pyValueFinder dataset to a Parquet file
- Parameters:
 path (str) – Where to place the file
- Returns:
 The paths to the model and predictor data files
- Return type:
 (Optional[Path], Optional[Path])