pdstools.utils.streamlit_utils¶
Functions¶
|
Load ADMDatamart with caching. |
|
Load Prediction with caching. |
|
Import ADMDatamart data from various sources. |
|
|
|
|
|
|
|
Adds a UI on top of a dataframe to let viewers filter columns |
Returns unique model id count and row count from a dataframe |
|
|
|
Module Contents¶
- cached_sample()¶
- cached_datamart(**kwargs)¶
Load ADMDatamart with caching.
- Parameters:
**kwargs – Arguments passed to ADMDatamart.from_ds_export
- cached_sample_prediction()¶
- cached_prediction_table(**kwargs)¶
Load Prediction with caching.
- Parameters:
**kwargs – Arguments passed to Prediction.from_ds_export
- import_datamart(extract_pyname_keys: bool, infer_schema_length: int = 10000)¶
Import ADMDatamart data from various sources.
- Parameters:
extract_pyname_keys (bool) – Whether to extract additional keys from pyName column
infer_schema_length (int, default 10000) – Number of rows to scan for schema inference when reading CSV/JSON files. For large production datasets, increase this value (e.g., 200000) if columns are not being detected correctly.
- from_uploaded_file(extract_pyname_keys, codespaces, infer_schema_length=10000)¶
- from_file_path(extract_pyname_keys, codespaces, infer_schema_length=10000)¶
- model_selection_df(df: polars.LazyFrame, context_keys: list)¶
- Parameters:
df (polars.LazyFrame)
context_keys (list)
- filter_dataframe(df: polars.LazyFrame, schema: dict | None = None, queries=[]) polars.LazyFrame¶
Adds a UI on top of a dataframe to let viewers filter columns
- Parameters:
df (pl.DataFrame) – Original dataframe
schema (Optional[dict])
- Returns:
The filtered LazyFrame
- Return type:
pl.LazyFrame
- model_and_row_counts(df: pdstools.utils.types.ANY_FRAME)¶
Returns unique model id count and row count from a dataframe
- configure_predictor_categorization()¶
- convert_df(df)¶
- st_get_latest_pdstools_version()¶