pdstools.adm¶
Submodules¶
Classes¶
Monitor and analyze ADM data from the Pega Datamart. |
Package Contents¶
- class ADMDatamart(model_df: polars.LazyFrame | None = None, predictor_df: polars.LazyFrame | None = None, *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True)¶
Monitor and analyze ADM data from the Pega Datamart.
To initialize this class, either 1. Initialize directly with the model_df and predictor_df polars LazyFrames 2. Use one of the class methods: from_ds_export, from_s3 or from_dataflow_export
This class will read in the data from different sources, properly structure them from further analysis, and apply correct typing and useful renaming.
There is also a few “namespaces” that you can call from this class:
.plot contains ready-made plots to analyze the data with
.aggregates contains mostly internal data aggregations queries
.agb contains analysis utilities for Adaptive Gradient Boosting models
.generate leads to some ready-made reports, such as the Health Check
.bin_aggregator allows you to compare the bins across various models
- Parameters:
model_df (pl.LazyFrame, optional) – The Polars LazyFrame representation of the model snapshot table.
predictor_df (pl.LazyFrame, optional) – The Polars LazyFrame represenation of the predictor binning table.
query (QUERY, optional) – An optional query to apply to the input data. For details, see
pdstools.utils.cdh_utils._apply_query()
.extract_pyname_keys (bool, default = True) – Whether to extract extra keys from the pyName column. In older Pega versions, this contained pyTreatment among other (customizable) fields. By default True
Examples
>>> from pdstools import ADMDatamart >>> from glob import glob >>> dm = ADMDatamart( model_df = pl.scan_parquet('models.parquet'), predictor_df = pl.scan_parquet('predictors.parquet') query = {"Configuration":["Web_Click_Through"]} ) >>> dm = ADMDatamart.from_ds_export(base_path='/my_export_folder') >>> dm = ADMDatamart.from_s3("pega_export") >>> dm = ADMDatamart.from_dataflow_export(glob("data/models*"), glob("data/preds*"))
Note
This class depends on two datasets:
pyModelSnapshots corresponds to the model_data attribute
pyADMPredictorSnapshots corresponds to the predictor_data attribute
For instructions on how to download these datasets, please refer to the following article: https://docs.pega.com/bundle/platform/page/platform/decision-management/exporting-monitoring-database.html
See also
pdstools.adm.Plots
The out of the box plots on the Datamart data
pdstools.adm.Reports
Methods to generate the Health Check and Model Report
pdstools.utils.cdh_utils._apply_query
How to query the ADMDatamart class and methods
- aggregates: pdstools.adm.Aggregates.Aggregates¶
- generate: pdstools.adm.Reports.Reports¶
- cdh_guidelines: pdstools.adm.CDH_Guidelines.CDHGuidelines¶
- bin_aggregator: pdstools.adm.BinAggregator.BinAggregator¶
- classmethod from_ds_export(model_filename: str | None = None, predictor_filename: str | None = None, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True)¶
Import the ADMDatamart class from a Pega Dataset Export
- Parameters:
model_filename (Optional[str], optional) – The full path or name (if base_path is given) to the model snapshot files, by default None
predictor_filename (Optional[str], optional) – The full path or name (if base_path is given) to the predictor binning snapshot files, by default None
base_path (Union[os.PathLike, str], optional) – A base path to provide so that we can automatically find the most recent files for both the model and predictor snapshots, if model_filename and predictor_filename are not given as full paths, by default “.”
query (Optional[QUERY], optional) – An optional argument to filter out selected data, by default None
extract_pyname_keys (bool, optional) – Whether to extract additional keys from the pyName column, by default True
- Returns:
The properly initialized ADMDatamart class
- Return type:
Examples
>>> from pdstools import ADMDatamart
>>> # To automatically find the most recent files in the 'my_export_folder' dir: >>> dm = ADMDatamart.from_ds_export(base_path='/my_export_folder')
>>> # To specify individual files: >>> dm = ADMDatamart.from_ds_export( model_df='/Downloads/model_snapshots.parquet', predictor_df = '/Downloads/predictor_snapshots.parquet' )
Note
By default, the dataset export in Infinity returns a zip file per table. You do not need to open up this zip file! You can simply point to the zip, and this method will be able to read in the underlying data.
See also
pdstools.pega_io.File.read_ds_export
More information on file compatibility
pdstools.utils.cdh_utils._apply_query
How to query the ADMDatamart class and methods
- classmethod from_s3()¶
Not implemented yet. Please let us know if you would like this functionality!
- classmethod from_dataflow_export(model_data_files: Iterable[str] | str, predictor_data_files: Iterable[str] | str, *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: os.PathLike | str = 'cache')¶
Read in data generated by a data flow, such as the Prediction Studio export.
Dataflows are able to export data from and to various sources. As they are meant to be used in production, they are highly resiliant. For every partition and every node, a dataflow will output a small json file every few seconds. While this is great for production loads, it can be a bit more tricky to read in the data for smaller-scale and ad-hoc analyses.
This method aims to make the ingestion of such highly partitioned data easier. It reads in every individual small json file that the dataflow has output, and caches them to a parquet file in the cache_directory folder. As such, if you re-run this method later with more data added since the last export, we will not read in from the (slow) dataflow files, but rather from the (much faster) cache.
- Parameters:
model_data_files (Union[Iterable[str], str]) – A list of files to read in as the model snapshots
predictor_data_files (Union[Iterable[str], str]) – A list of files to read in as the predictor snapshots
query (Optional[QUERY], optional) – A, by default None
extract_pyname_keys (bool, optional) – Whether to extract extra keys from the pyName column, by default True
cache_file_prefix (str, optional) – An optional prefix for the cache files, by default “”
extension (Literal["json"], optional) – The extension of the source data, by default “json”
compression (Literal["gzip"], optional) – The compression of the source files, by default “gzip”
cache_directory (Union[os.PathLike, str], optional) – Where to store the cached files, by default “cache”
- Returns:
An initialized instance of the datamart class
- Return type:
Examples
>>> from pdstools import ADMDatamart >>> import glob >>> dm = ADMDatamart.from_dataflow_export(glob("data/models*"), glob("data/preds*"))
See also
pdstools.utils.cdh_utils._apply_query
How to query the ADMDatamart class and methods
glob
Makes creating lists of files much easier
- _validate_model_data(df: polars.LazyFrame | None, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True) polars.LazyFrame | None ¶
Internal method to validate model data
- Parameters:
df (Optional[polars.LazyFrame])
query (Optional[pdstools.utils.types.QUERY])
extract_pyname_keys (bool)
- Return type:
Optional[polars.LazyFrame]
- _validate_predictor_data(df: polars.LazyFrame | None) polars.LazyFrame | None ¶
Internal method to validate predictor data
- Parameters:
df (Optional[polars.LazyFrame])
- Return type:
Optional[polars.LazyFrame]
- apply_predictor_categorization(df: polars.LazyFrame | None = None, categorization: polars.Expr | Callable[Ellipsis, polars.Expr] = cdh_utils.default_predictor_categorization)¶
Apply a new predictor categorization to the datamart tables
In certain plots, we use the predictor categorization to indicate what ‘kind’ a certain predictor is, such as IH, Customer, etc. Call this method with a custom Polars Expression (or a method that returns one) - and it will be applied to the predictor data (and the combined dataset too).
For a reference implementation of a custom predictor categorization, refer to pdstools.utils.cdh_utils.default_predictor_categorization.
- Parameters:
df (Optional[pl.LazyFrame], optional) – A Polars Lazyframe to apply the categorization to. If not provided, applies it over the predictor data and combined datasets. By default, None
categorization (Union[pl.Expr, Callable[..., pl.Expr]]) – A polars Expression (or method that returns one) to apply the mapping with. Should be based on Polars’ when.then.otherwise syntax. By default, pdstools.utils.cdh_utils.default_predictor_categorization
See also
pdstools.utils.cdh_utils.default_predictor_categorization
The default method
Examples
>>> dm = ADMDatamart(my_data) #uses the OOTB predictor categorization
>>> dm.apply_predictor_categorization(categorization=pl.when( >>> pl.col("PredictorName").cast(pl.Utf8).str.contains("Propensity") >>> ).then(pl.lit("External Model") >>> ).otherwise(pl.lit("Adaptive Model)")
>>> # Now, every subsequent plot will use the custom categorization
- save_data(path: os.PathLike | str = '.', selected_model_ids: List[str] | None = None) Tuple[pathlib.Path | None, pathlib.Path | None] ¶
Caches model_data and predictor_data to files.
- property unique_channels¶
A consistently ordered set of unique channels in the data
Used for making the color schemes in different plots consistent
- property unique_configurations¶
A consistently ordered set of unique configurations in the data
Used for making the color schemes in different plots consistent
- property unique_channel_direction¶
A consistently ordered set of unique channel+direction combos in the data Used for making the color schemes in different plots consistent
- property unique_configuration_channel_direction¶
A consistently ordered set of unique configuration+channel+direction Used for making the color schemes in different plots consistent
- property unique_predictor_categories¶
A consistently ordered set of unique predictor categories in the data Used for making the color schemes in different plots consistent