pdstools.infinity.resources.prediction_studio.base

Attributes

Exceptions

ModelValidationError

Exception for errors during model validation.

Classes

Metrics

dict() -> new empty dictionary

ModelAttributes

dict() -> new empty dictionary

Model

Helper class that provides a standard way to create an ABC using

Prediction

Helper class that provides a standard way to create an ABC using

Notification

Helper class that provides a standard way to create an ABC using

UploadedModel

Helper class that provides a standard way to create an ABC using

LocalModel

Usage docs: https://docs.pydantic.dev/2.10/concepts/models/

Repository

Helper class that provides a standard way to create an ABC using

DataMartExport

Helper class that provides a standard way to create an ABC using

PredictionStudioBase

Helper class that provides a standard way to create an ABC using

AsyncPredictionStudioBase

Helper class that provides a standard way to create an ABC using

ChampionChallenger

Helper class that provides a standard way to create an ABC using

Module Contents

DEPLOYMENT_MODE
class Metrics

Bases: TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

dict(iterable) -> new dictionary initialized as if via:

d = {} for k, v in iterable:

d[k] = v

dict(**kwargs) -> new dictionary initialized with the name=value pairs

in the keyword argument list. For example: dict(one=1, two=2)

lift: float
performance: float
performanceMeasure: Literal['AUC']
class ModelAttributes

Bases: TypedDict

dict() -> new empty dictionary dict(mapping) -> new dictionary initialized from a mapping object’s

(key, value) pairs

dict(iterable) -> new dictionary initialized as if via:

d = {} for k, v in iterable:

d[k] = v

dict(**kwargs) -> new dictionary initialized with the name=value pairs

in the keyword argument list. For example: dict(one=1, two=2)

modelId: str
status: str
label: str
type: str
subject: str
objective: str
outcome_type: str
model_type: str
modeling_technique: str
source: str
targetLabels: List[Dict[Literal['label'], str]]
alternativeLabels: List[Dict[Literal['label'], str]]
metrics: Dict[str, Any]
class Model(client: pdstools.infinity.client.SyncAPIClient, *, modelId: str, label: str, modelType: str, status: str, componentName: str | None = None, source: str | None = None, lastUpdateTime: str | None = None, modelingTechnique: str | None = None, updatedBy: str | None = None)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:
  • client (pdstools.infinity.client.SyncAPIClient)

  • modelId (str)

  • label (str)

  • modelType (str)

  • status (str)

  • componentName (Union[str, None])

  • source (Union[str, None])

  • lastUpdateTime (Union[str, None])

  • modelingTechnique (Union[str, None])

  • updatedBy (Union[str, None])

model_id
label
model_type
modeling_technique = None
source = None
status
updated_by = None
abstract describe() ModelAttributes
Return type:

ModelAttributes

class Prediction(client: pdstools.infinity.client.SyncAPIClient, *, predictionId: str, label: str, status: str, lastUpdateTime: str, objective: str | None = None, subject: str | None = None)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:
  • client (pdstools.infinity.client.SyncAPIClient)

  • predictionId (str)

  • label (str)

  • status (str)

  • lastUpdateTime (str)

  • objective (Optional[str])

  • subject (Optional[str])

prediction_id
label
objective = None
subject = None
status
last_update_time
abstract get_metric(*, metric: Literal['Performance', 'Total_responses', 'Lift', 'Success_rate'], timeframe: Literal['7d', '4w', '3m', '6m']) polars.DataFrame
Parameters:
  • metric (Literal['Performance', 'Total_responses', 'Lift', 'Success_rate'])

  • timeframe (Literal['7d', '4w', '3m', '6m'])

Return type:

polars.DataFrame

abstract describe()
class Notification(client: pdstools.infinity.client.SyncAPIClient, *, description: str, modelType: str, notificationID: str, notificationType: str, notificationMnemonic: str, context: str, impact: str, triggerTime: str, modelID: str | None = None, predictionID: str | None = None)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:
  • client (pdstools.infinity.client.SyncAPIClient)

  • description (str)

  • modelType (str)

  • notificationID (str)

  • notificationType (str)

  • notificationMnemonic (str)

  • context (str)

  • impact (str)

  • triggerTime (str)

  • modelID (Union[str, None])

  • predictionID (Union[str, None])

notification_type
notification_id
notification_mnemonic
description
model_type
impact
trigger_time
class UploadedModel

Bases: abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

exception ModelValidationError

Bases: Exception

Exception for errors during model validation.

class LocalModel(/, **data: Any)

Bases: pydantic.BaseModel

Usage docs: https://docs.pydantic.dev/2.10/concepts/models/

A base class for creating Pydantic models.

Attributes:

__class_vars__: The names of the class variables defined on the model. __private_attributes__: Metadata about the private attributes of the model. __signature__: The synthesized __init__ [Signature][inspect.Signature] of the model.

__pydantic_complete__: Whether model building is completed, or if there are still undefined fields. __pydantic_core_schema__: The core schema of the model. __pydantic_custom_init__: Whether the model has a custom __init__ function. __pydantic_decorators__: Metadata containing the decorators defined on the model.

This replaces Model.__validators__ and Model.__root_validators__ from Pydantic V1.

__pydantic_generic_metadata__: Metadata for generic models; contains data used for a similar purpose to

__args__, __origin__, __parameters__ in typing-module generics. May eventually be replaced by these.

__pydantic_parent_namespace__: Parent namespace of the model, used for automatic rebuilding of models. __pydantic_post_init__: The name of the post-init method for the model, if defined. __pydantic_root_model__: Whether the model is a [RootModel][pydantic.root_model.RootModel]. __pydantic_serializer__: The pydantic-core SchemaSerializer used to dump instances of the model. __pydantic_validator__: The pydantic-core SchemaValidator used to validate instances of the model.

__pydantic_fields__: A dictionary of field names and their corresponding [FieldInfo][pydantic.fields.FieldInfo] objects. __pydantic_computed_fields__: A dictionary of computed field names and their corresponding [ComputedFieldInfo][pydantic.fields.ComputedFieldInfo] objects.

__pydantic_extra__: A dictionary containing extra values, if [extra][pydantic.config.ConfigDict.extra]

is set to ‘allow’.

__pydantic_fields_set__: The names of fields explicitly set during instantiation. __pydantic_private__: Values of private attributes set on the model instance.

Parameters:

data (Any)

validate() bool

Validates a model.

Raises:

ModelValidationError – If the model is invalid or if the validation process fails.:

Return type:

bool

get_file_path() str

Returns the file path of the model.

Returns:

str

Return type:

The file path of the model.

class Repository(client: pdstools.infinity.client.SyncAPIClient)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:

client (pdstools.infinity.client.SyncAPIClient)

name: str
property s3_url: str
Return type:

str

class DataMartExport(client, **kwargs)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

referenceId
location
repositoryName
class PredictionStudioBase(client: pdstools.infinity.client.SyncAPIClient)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:

client (pdstools.infinity.client.SyncAPIClient)

version: str
abstract list_predictions() pdstools.infinity.internal._pagination.PaginatedList[Prediction]
Return type:

pdstools.infinity.internal._pagination.PaginatedList[Prediction]

abstract repository() Repository
Return type:

Repository

class AsyncPredictionStudioBase(client: pdstools.infinity.client.AsyncAPIClient)

Bases: pdstools.infinity.internal._resource.AsyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:

client (pdstools.infinity.client.AsyncAPIClient)

version: str
abstract list_predictions() pdstools.infinity.internal._pagination.PaginatedList[Prediction]
Async:

Return type:

pdstools.infinity.internal._pagination.PaginatedList[Prediction]

abstract repository() Repository
Async:

Return type:

Repository

class ChampionChallenger(client: pdstools.infinity.client.SyncAPIClient)

Bases: pdstools.infinity.internal._resource.SyncAPIResource, abc.ABC

Helper class that provides a standard way to create an ABC using inheritance.

Parameters:

client (pdstools.infinity.client.SyncAPIClient)

abstract _status()
abstract _introduce_model(champion_response_percentage: float)
Parameters:

champion_response_percentage (float)

abstract _check_then_update(champion_response_percentage: float)
Parameters:

champion_response_percentage (float)