pdstools

Pega Data Scientist Tools Python library

Submodules

Classes

ADMDatamart

Monitor and analyze ADM data from the Pega Datamart.

IH

Analyze Interaction History data from Pega CDH.

ImpactAnalyzer

Analyze and visualize Impact Analyzer experiment results from Pega CDH.

Prediction

Monitor and analyze Pega Prediction Studio Predictions.

ValueFinder

Analyze the Value Finder dataset for detailed insights

Functions

read_ds_export(→ Optional[polars.LazyFrame])

Read in most out of the box Pega dataset export formats

default_predictor_categorization() → polars.Expr)

Function to determine the 'category' of a predictor.

cdh_sample(→ pdstools.adm.ADMDatamart.ADMDatamart)

Import a sample dataset from the CDH Sample application

sample_value_finder(...)

Import a sample dataset of a Value Finder simulation

show_versions(…)

Get a list of currently installed versions of pdstools and its dependencies.

Package Contents

class ADMDatamart(model_df: polars.LazyFrame | None = None, predictor_df: polars.LazyFrame | None = None, *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True)

Monitor and analyze ADM data from the Pega Datamart.

To initialize this class, either 1. Initialize directly with the model_df and predictor_df polars LazyFrames 2. Use one of the class methods: from_ds_export, from_s3, from_dataflow_export etc.

This class will read in the data from different sources, properly structure them from further analysis, and apply correct typing and useful renaming.

There is also a few “namespaces” that you can call from this class:

  • .plot contains ready-made plots to analyze the data with

  • .aggregates contains mostly internal data aggregations queries

  • .agb contains analysis utilities for Adaptive Gradient Boosting models

  • .generate leads to some ready-made reports, such as the Health Check

  • .bin_aggregator allows you to compare the bins across various models

Parameters:
  • model_df (pl.LazyFrame, optional) – The Polars LazyFrame representation of the model snapshot table.

  • predictor_df (pl.LazyFrame, optional) – The Polars LazyFrame represenation of the predictor binning table.

  • query (QUERY, optional) – An optional query to apply to the input data. For details, see pdstools.utils.cdh_utils._apply_query().

  • extract_pyname_keys (bool, default = True) – Whether to extract extra keys from the pyName column. In older Pega versions, this contained pyTreatment among other (customizable) fields. By default True

Examples

>>> from pdstools import ADMDatamart
>>> from glob import glob
>>> dm = ADMDatamart(
         model_df = pl.scan_parquet('models.parquet'),
         predictor_df = pl.scan_parquet('predictors.parquet')
         query = {"Configuration":["Web_Click_Through"]}
         )
>>> dm = ADMDatamart.from_ds_export(base_path='/my_export_folder')
>>> dm = ADMDatamart.from_s3("pega_export")
>>> dm = ADMDatamart.from_dataflow_export(glob("data/models*"), glob("data/preds*"))

Note

This class depends on two datasets:

  • pyModelSnapshots corresponds to the model_data attribute

  • pyADMPredictorSnapshots corresponds to the predictor_data attribute

For instructions on how to download these datasets, please refer to the following article: https://docs.pega.com/bundle/platform/page/platform/decision-management/exporting-monitoring-database.html

See also

pdstools.adm.Plots

The out of the box plots on the Datamart data

pdstools.adm.Reports

Methods to generate the Health Check and Model Report

pdstools.utils.cdh_utils._apply_query

How to query the ADMDatamart class and methods

model_data: polars.LazyFrame | None
predictor_data: polars.LazyFrame | None
combined_data: polars.LazyFrame | None
plot: pdstools.adm.Plots.Plots
aggregates: pdstools.adm.Aggregates.Aggregates
agb: pdstools.adm.ADMTrees.AGB
generate: pdstools.adm.Reports.Reports
bin_aggregator: pdstools.adm.BinAggregator.BinAggregator
first_action_dates: polars.LazyFrame | None
context_keys: List[str] = ['Channel', 'Direction', 'Issue', 'Group', 'Name']
_get_first_action_dates(df: polars.LazyFrame | None) polars.LazyFrame | None
Parameters:

df (Optional[polars.LazyFrame])

Return type:

Optional[polars.LazyFrame]

classmethod from_ds_export(model_filename: str | None = None, predictor_filename: str | None = None, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True)

Import the ADMDatamart class from a Pega Dataset Export

Parameters:
  • model_filename (Optional[str], optional) – The full path or name (if base_path is given) to the model snapshot files, by default None

  • predictor_filename (Optional[str], optional) – The full path or name (if base_path is given) to the predictor binning snapshot files, by default None

  • base_path (Union[os.PathLike, str], optional) – A base path to provide so that we can automatically find the most recent files for both the model and predictor snapshots, if model_filename and predictor_filename are not given as full paths, by default “.”

  • query (Optional[QUERY], optional) – An optional argument to filter out selected data, by default None

  • extract_pyname_keys (bool, optional) – Whether to extract additional keys from the pyName column, by default True

Returns:

The properly initialized ADMDatamart class

Return type:

ADMDatamart

Examples

>>> from pdstools import ADMDatamart
>>> # To automatically find the most recent files in the 'my_export_folder' dir:
>>> dm = ADMDatamart.from_ds_export(base_path='/my_export_folder')
>>> # To specify individual files:
>>> dm = ADMDatamart.from_ds_export(
        model_df='/Downloads/model_snapshots.parquet',
        predictor_df = '/Downloads/predictor_snapshots.parquet'
        )

Note

By default, the dataset export in Infinity returns a zip file per table. You do not need to open up this zip file! You can simply point to the zip, and this method will be able to read in the underlying data.

See also

pdstools.pega_io.File.read_ds_export

More information on file compatibility

pdstools.utils.cdh_utils._apply_query

How to query the ADMDatamart class and methods

classmethod from_s3()

Not implemented yet. Please let us know if you would like this functionality!

classmethod from_dataflow_export(model_data_files: Iterable[str] | str, predictor_data_files: Iterable[str] | str, *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: os.PathLike | str = 'cache')

Read in data generated by a data flow, such as the Prediction Studio export.

Dataflows are able to export data from and to various sources. As they are meant to be used in production, they are highly resiliant. For every partition and every node, a dataflow will output a small json file every few seconds. While this is great for production loads, it can be a bit more tricky to read in the data for smaller-scale and ad-hoc analyses.

This method aims to make the ingestion of such highly partitioned data easier. It reads in every individual small json file that the dataflow has output, and caches them to a parquet file in the cache_directory folder. As such, if you re-run this method later with more data added since the last export, we will not read in from the (slow) dataflow files, but rather from the (much faster) cache.

Parameters:
  • model_data_files (Union[Iterable[str], str]) – A list of files to read in as the model snapshots

  • predictor_data_files (Union[Iterable[str], str]) – A list of files to read in as the predictor snapshots

  • query (Optional[QUERY], optional) – A, by default None

  • extract_pyname_keys (bool, optional) – Whether to extract extra keys from the pyName column, by default True

  • cache_file_prefix (str, optional) – An optional prefix for the cache files, by default “”

  • extension (Literal["json"], optional) – The extension of the source data, by default “json”

  • compression (Literal["gzip"], optional) – The compression of the source files, by default “gzip”

  • cache_directory (Union[os.PathLike, str], optional) – Where to store the cached files, by default “cache”

Returns:

An initialized instance of the datamart class

Return type:

ADMDatamart

Examples

>>> from pdstools import ADMDatamart
>>> import glob
>>> dm = ADMDatamart.from_dataflow_export(glob("data/models*"), glob("data/preds*"))

See also

pdstools.utils.cdh_utils._apply_query

How to query the ADMDatamart class and methods

glob

Makes creating lists of files much easier

classmethod from_pdc(df: polars.LazyFrame, return_df=False)
Parameters:

df (polars.LazyFrame)

_validate_model_data(df: polars.LazyFrame | None, extract_pyname_keys: bool = True) polars.LazyFrame | None

Internal method to validate model data

Parameters:
  • df (Optional[polars.LazyFrame])

  • extract_pyname_keys (bool)

Return type:

Optional[polars.LazyFrame]

_validate_predictor_data(df: polars.LazyFrame | None) polars.LazyFrame | None

Internal method to validate predictor data

Parameters:

df (Optional[polars.LazyFrame])

Return type:

Optional[polars.LazyFrame]

apply_predictor_categorization(categorization: polars.Expr | Callable[Ellipsis, polars.Expr] | Dict[str, str | List[str]] = cdh_utils.default_predictor_categorization, *, use_regexp: bool = False, df: polars.LazyFrame | None = None)

Apply a new predictor categorization to the datamart tables

In certain plots, we use the predictor categorization to indicate what ‘kind’ a certain predictor is, such as IH, Customer, etc. Call this method with a custom Polars Expression (or a method that returns one) or a simple mapping and it will be applied to the predictor data (and the combined dataset too). When the categorization provides no match, the existing categories are kept as they are.

For a reference implementation of a custom predictor categorization, refer to pdstools.utils.cdh_utils.default_predictor_categorization.

Parameters:
  • categorization (Union[pl.Expr, Callable[..., pl.Expr], Dict[str, Union[str, List[str]]]]) – A Polars Expression (or method that returns one) that returns the predictor categories. Should be based on Polars’ when.then.otherwise syntax. Alternatively can be a dictionary of categories to (list of) string matches which can be either exact (the default) or regular expressions. By default, pdstools.utils.cdh_utils.default_predictor_categorization is used.

  • use_regexp (bool, optional) – Treat the mapping patterns in the categorization dictionary as regular expressions rather than plain strings. When treated as regular expressions, they will be interpreted in non-strict mode, so invalid expressions will return in no match. See https://docs.pola.rs/api/python/stable/reference/series/api/polars.Series.str.contains.html for exact behavior of the regular expressions. By default, False

  • df (Optional[pl.LazyFrame], optional) – A Polars Lazyframe to apply the categorization to. If not provided, applies it over the predictor data and combined datasets. By default, None

Examples

>>> dm = ADMDatamart(my_data) #uses the OOTB predictor categorization
>>> # Uses a custom Polars expression to set the categories
>>> dm.apply_predictor_categorization(categorization=pl.when(
>>> pl.col("PredictorName").cast(pl.Utf8).str.contains("Propensity")
>>> ).then(pl.lit("External Model")
>>> )
>>> # Uses a simple dictionary to set the categories
>>> dm.apply_predictor_categorization(categorization={
>>> "External Model" : ["Score", "Propensity"]}
>>> )
save_data(path: os.PathLike | str = '.', selected_model_ids: List[str] | None = None) Tuple[pathlib.Path | None, pathlib.Path | None]

Caches model_data and predictor_data to files.

Parameters:
  • path (str) – Where to place the files

  • selected_model_ids (List[str]) – Optional list of model IDs to restrict to

Returns:

The paths to the model and predictor data files

Return type:

(Optional[Path], Optional[Path])

property unique_channels

A consistently ordered set of unique channels in the data

Used for making the color schemes in different plots consistent

property unique_configurations

A consistently ordered set of unique configurations in the data

Used for making the color schemes in different plots consistent

property unique_channel_direction

A consistently ordered set of unique channel+direction combos in the data Used for making the color schemes in different plots consistent

property unique_configuration_channel_direction

A consistently ordered set of unique configuration+channel+direction Used for making the color schemes in different plots consistent

property unique_predictor_categories

A consistently ordered set of unique predictor categories in the data Used for making the color schemes in different plots consistent

classmethod _minMaxScoresPerModel(bin_data: polars.LazyFrame) polars.LazyFrame
Parameters:

bin_data (polars.LazyFrame)

Return type:

polars.LazyFrame

active_ranges(model_ids: str | List[str] | None = None) polars.LazyFrame

Calculate the active, reachable bins in classifiers.

The classifiers exported by Pega contain (in certain product versions) more than the bins that can be reached given the current state of the predictors. This method first calculates the min and max score range from the predictor log odds, then maps that to the interval boundaries of the classifier(s) to find the min and max index.

It returns a LazyFrame with the score min/max, the min/max index, as well as the AUC as reported in the datamart data, when calculated from the full range, and when calculated from the reachable bins only.

This information can be used in the Health Check documents or when verifying the AUC numbers from the datamart.

Parameters:

model_ids (Optional[Union[str, List[str]]], optional) – An optional list of model id’s, or just a single one, to report on. When not given, the information is returned for all models.

Returns:

A table with all the index and AUC information for all the models with the following fields:

Model Identification: - ModelID - The unique identifier for the model

AUC Metrics: - AUC_Datamart - The AUC value as reported in the datamart - AUC_FullRange - The AUC calculated from the full range of bins in the classifier - AUC_ActiveRange - The AUC calculated from only the active/reachable bins

Classifier Information: - Bins - The total number of bins in the classifier - nActivePredictors - The number of active predictors in the model

Log Odds Information (mostly for internal use): - classifierLogOffset - The log offset of the classifier (baseline log odds) - sumMinLogOdds - The sum of minimum log odds across all active predictors - sumMaxLogOdds - The sum of maximum log odds across all active predictors - score_min - The minimum score (normalized sum of log odds including classifier offset) - score_max - The maximum score (normalized sum of log odds including classifier offset)

Active Range Information: - idx_min - The minimum bin index that can be reached given the current binning of all predictors - idx_max - The maximum bin index that can be reached given the current binning of all predictors

Return type:

pl.LazyFrame

class IH(data: polars.LazyFrame)

Analyze Interaction History data from Pega CDH.

The IH class provides analysis and visualization capabilities for customer interaction data from Pega’s Customer Decision Hub. It supports engagement, conversion, and open rate metrics through customizable outcome label mappings.

Parameters:

data (polars.LazyFrame)

data

The underlying interaction history data.

Type:

pl.LazyFrame

aggregates

Aggregation methods accessor.

Type:

Aggregates

plot

Plot accessor for visualization methods.

Type:

Plots

positive_outcome_labels

Mapping of metric types to positive outcome labels.

Type:

dict

negative_outcome_labels

Mapping of metric types to negative outcome labels.

Type:

dict

See also

pdstools.adm.ADMDatamart

For ADM model analysis.

pdstools.impactanalyzer.ImpactAnalyzer

For Impact Analyzer experiments.

Examples

>>> from pdstools import IH
>>> ih = IH.from_ds_export("interaction_history.zip")
>>> ih.aggregates.summary_by_channel().collect()
>>> ih.plot.response_count_trend()
data: polars.LazyFrame
positive_outcome_labels: Dict[str, List[str]]

Mapping of metric types to positive outcome labels.

negative_outcome_labels: Dict[str, List[str]]

Mapping of metric types to negative outcome labels.

aggregates
plot
classmethod from_ds_export(ih_filename: os.PathLike | str, query: pdstools.utils.types.QUERY | None = None) IH

Create an IH instance from a Pega Dataset Export.

Parameters:
  • ih_filename (Union[os.PathLike, str]) – Path to the dataset export file (parquet, csv, ndjson, or zip).

  • query (Optional[QUERY], optional) – Polars expression to filter the data. Default is None.

Returns:

Initialized IH instance.

Return type:

IH

Examples

>>> ih = IH.from_ds_export("Data-pxStrategyResult_pxInteractionHistory.zip")
>>> ih.data.collect_schema()
classmethod from_s3() IH
Abstractmethod:

Return type:

IH

Create an IH instance from S3 data.

Note

Not implemented yet. Please let us know if you would like this!

Raises:

NotImplementedError – This method is not yet implemented.

Return type:

IH

classmethod from_mock_data(days: int = 90, n: int = 100000) IH

Create an IH instance with synthetic sample data.

Generates realistic interaction history data for testing and demonstration purposes. Includes inbound (Web) and outbound (Email) channels with configurable propensities and model noise.

Parameters:
  • days (int, default 90) – Number of days of data to generate.

  • n (int, default 100000) – Number of interaction records to generate.

Returns:

IH instance with synthetic data.

Return type:

IH

Examples

>>> ih = IH.from_mock_data(days=30, n=10000)
>>> ih.data.select("pyChannel").collect().unique()
get_sequences(positive_outcome_label: str, level: str, outcome_column: str, customerid_column: str) Tuple[List[Tuple[str, Ellipsis]], List[Tuple[int, Ellipsis]], List[collections.defaultdict], List[collections.defaultdict]]

Extract customer action sequences for PMI analysis.

Processes customer interaction data to produce action sequences, outcome labels, and frequency counts needed for Pointwise Mutual Information (PMI) calculations.

Parameters:
  • positive_outcome_label (str) – Outcome label marking the target event (e.g., “Conversion”).

  • level (str) – Column name containing the action/offer/treatment.

  • outcome_column (str) – Column name containing the outcome label.

  • customerid_column (str) – Column name identifying unique customers.

Returns:

  • customer_sequences (List[Tuple[str, …]]) – Action sequences per customer.

  • customer_outcomes (List[Tuple[int, …]]) – Binary outcomes (1=positive, 0=other) per sequence position.

  • count_actions (List[defaultdict]) – Action frequency counts: - [0]: First element counts in bigrams - [1]: Second element counts in bigrams

  • count_sequences (List[defaultdict]) – Sequence frequency counts: - [0]: All bigrams - [1]: ≥3-grams ending with positive outcome - [2]: Bigrams ending with positive outcome - [3]: Unique n-grams per customer

Return type:

Tuple[List[Tuple[str, Ellipsis]], List[Tuple[int, Ellipsis]], List[collections.defaultdict], List[collections.defaultdict]]

See also

calculate_pmi

Compute PMI scores from sequence counts.

pmi_overview

Generate PMI analysis summary.

static calculate_pmi(count_actions: List[collections.defaultdict], count_sequences: List[collections.defaultdict]) Dict[Tuple[str, Ellipsis], float | Dict[str, float | Dict]]

Compute PMI scores for action sequences.

Calculates Pointwise Mutual Information scores for bigrams and higher-order n-grams. Higher values indicate more informative or surprising action sequences.

Parameters:
  • count_actions (List[defaultdict]) – Action frequency counts from get_sequences().

  • count_sequences (List[defaultdict]) – Sequence frequency counts from get_sequences().

Returns:

PMI scores for sequences: - Bigrams: Direct PMI value (float) - N-grams (n≥3): Dict with ‘average_pmi’ and ‘links’ (constituent bigram PMIs)

Return type:

Dict[Tuple[str, …], Union[float, Dict]]

See also

get_sequences

Extract sequences for PMI analysis.

pmi_overview

Generate PMI analysis summary.

Notes

Bigram PMI is calculated as:

\[PMI(a, b) = \log_2 \frac{P(a, b)}{P(a) \cdot P(b)}\]

N-gram PMI is the average of constituent bigram PMIs.

static pmi_overview(ngrams_pmi: Dict[Tuple[str, Ellipsis], float | Dict], count_sequences: List[collections.defaultdict], customer_sequences: List[Tuple[str, Ellipsis]], customer_outcomes: List[Tuple[int, Ellipsis]]) polars.DataFrame

Generate PMI analysis summary DataFrame.

Creates a summary of action sequences ranked by their significance in predicting positive outcomes.

Parameters:
  • ngrams_pmi (Dict[Tuple[str, ...], Union[float, Dict]]) – PMI scores from calculate_pmi().

  • count_sequences (List[defaultdict]) – Sequence frequency counts from get_sequences().

  • customer_sequences (List[Tuple[str, ...]]) – Customer action sequences from get_sequences().

  • customer_outcomes (List[Tuple[int, ...]]) – Customer outcome sequences from get_sequences().

Returns:

Summary DataFrame with columns:

  • Sequence: Action sequence tuple

  • Length: Number of actions in sequence

  • Avg PMI: Average PMI value

  • Frequency: Total occurrence count

  • Unique freq: Unique customer count

  • Score: PMI × log(Frequency), sorted descending

Return type:

pl.DataFrame

See also

get_sequences

Extract sequences for analysis.

calculate_pmi

Compute PMI scores.

Examples

>>> seqs, outs, actions, counts = ih.get_sequences(
...     "Conversion", "pyName", "pyOutcome", "pxInteractionID"
... )
>>> pmi = IH.calculate_pmi(actions, counts)
>>> IH.pmi_overview(pmi, counts, seqs, outs)
class ImpactAnalyzer(raw_data: polars.LazyFrame)

Analyze and visualize Impact Analyzer experiment results from Pega CDH.

The ImpactAnalyzer class provides analysis and visualization capabilities for NBA (Next-Best-Action) Impact Analyzer experiments. It processes experiment data from Pega’s Customer Decision Hub to compare the effectiveness of different NBA strategies including adaptive models, propensity prioritization, lever usage, and engagement policies.

Data can be loaded from three sources:

  • PDC exports via from_pdc(): Uses pre-aggregated experiment data from PDC JSON exports. Value Lift is copied from PDC data as it cannot be re-calculated from the available numbers.

  • VBD exports via from_vbd(): Reconstructs experiment metrics from raw VBD Actuals or Scenario Planner Actuals data. Allows flexible time ranges and data selection. Value Lift is calculated from ValuePerImpression.

  • Interaction History via from_ih(): Loads experiment metrics from Interaction History data. Not yet implemented.

\[\text{Engagement Lift} = \frac{\text{SuccessRate}_{test} - \text{SuccessRate}_{control}}{\text{SuccessRate}_{control}}\]
\[\text{Value Lift} = \frac{\text{ValueCapture}_{test} - \text{ValueCapture}_{control}}{\text{ValueCapture}_{control}}\]
Parameters:

raw_data (polars.LazyFrame)

ia_data

The underlying experiment data containing control group metrics.

Type:

pl.LazyFrame

plot

Plot accessor for visualization methods.

Type:

Plots

See also

pdstools.adm.ADMDatamart

For ADM model analysis.

pdstools.ih.IH

For Interaction History analysis.

Examples

>>> from pdstools import ImpactAnalyzer
>>> ia = ImpactAnalyzer.from_pdc("impact_analyzer_export.json")
>>> ia.overall_summary().collect()
>>> ia.plot.overview()
ia_data: polars.LazyFrame
default_ia_experiments

Default experiments mapping experiment names to (control, test) group tuples.

outcome_labels

Mapping of metric names to outcome labels used for aggregation.

default_ia_controlgroups
plot
classmethod from_pdc(pdc_source: os.PathLike | str | List[os.PathLike] | List[str], *, reader: Callable | None = None, query: pdstools.utils.types.QUERY | None = None, return_wide_df: bool = False, return_df: bool = False) ImpactAnalyzer | polars.LazyFrame

Create an ImpactAnalyzer instance from PDC JSON export(s).

Loads pre-aggregated experiment data from Pega Decision Central JSON exports. Value Lift metrics are copied directly from the PDC data.

Parameters:
  • pdc_source (Union[os.PathLike, str, List[os.PathLike], List[str]]) – Path to PDC JSON file, or a list of paths to concatenate.

  • reader (Optional[Callable], optional) – Custom function to read source data into a dict. If None, uses standard JSON file reader. Default is None.

  • query (Optional[QUERY], optional) – Polars expression to filter the data. Default is None.

  • return_wide_df (bool, optional) – If True, return the raw wide-format data as a LazyFrame for debugging. Default is False.

  • return_df (bool, optional) – If True, return the processed data as a LazyFrame instead of an ImpactAnalyzer instance. Default is False.

Returns:

ImpactAnalyzer instance, or LazyFrame if return_df or return_wide_df is True.

Return type:

ImpactAnalyzer or pl.LazyFrame

Raises:

ValueError – If an empty list of source files is provided.

Examples

>>> ia = ImpactAnalyzer.from_pdc("CDH_Metrics_ImpactAnalyzer.json")
>>> ia.overall_summary().collect()
classmethod from_vbd(vbd_source: os.PathLike | str, *, return_df: bool = False) ImpactAnalyzer | polars.LazyFrame | None

Create an ImpactAnalyzer instance from VBD data.

Processes VBD Actuals or Scenario Planner Actuals data to reconstruct Impact Analyzer experiment metrics. Provides more flexible time ranges and data selection compared to PDC exports.

Value Lift is calculated from ValuePerImpression since raw value data is available in VBD exports.

Parameters:
  • vbd_source (Union[os.PathLike, str]) – Path to VBD export file (parquet, csv, ndjson, or zip).

  • return_df (bool, optional) – If True, return processed data as LazyFrame instead of ImpactAnalyzer instance. Default is False.

Returns:

ImpactAnalyzer instance, LazyFrame if return_df is True, or None if the source contains no data.

Return type:

ImpactAnalyzer or pl.LazyFrame or None

Examples

>>> ia = ImpactAnalyzer.from_vbd("ScenarioPlannerActuals.zip")
>>> ia.summary_by_channel().collect()
classmethod from_ih(ih_source: os.PathLike | str, *, return_df: bool = False) ImpactAnalyzer | polars.LazyFrame | None
Abstractmethod:

Parameters:
Return type:

Union[ImpactAnalyzer, polars.LazyFrame, None]

Create an ImpactAnalyzer instance from Interaction History data.

Note

This method is not yet implemented.

Reconstructs experiment metrics from Interaction History data, allowing analysis of experiments using detailed interaction-level records.

Parameters:
  • ih_source (Union[os.PathLike, str]) – Path to Interaction History export file.

  • return_df (bool, optional) – If True, return processed data as LazyFrame instead of ImpactAnalyzer instance. Default is False.

Returns:

ImpactAnalyzer instance, LazyFrame if return_df is True, or None if the source contains no data.

Return type:

ImpactAnalyzer or pl.LazyFrame or None

Raises:

NotImplementedError – This method is not yet implemented.

classmethod _normalize_pdc_ia_data(json_data: dict, *, query: pdstools.utils.types.QUERY | None = None, return_wide_df: bool = False) polars.LazyFrame

Transform PDC Impact Analyzer JSON into normalized long format.

Converts the hierarchical PDC JSON structure (organized by experiments) into a flat structure organized by control groups with impression and accept counts.

Parameters:
  • json_data (dict) – Parsed JSON data from PDC export.

  • query (Optional[QUERY], optional) – Polars expression to filter the data. Default is None.

  • return_wide_df (bool, optional) – If True, return intermediate wide-format data. Default is False.

Returns:

Normalized data with columns: SnapshotTime, Channel, ControlGroup, Impressions, Accepts, ValuePerImpression, Pega_ValueLift.

Return type:

pl.LazyFrame

summary_by_channel() polars.LazyFrame

Get experiment summary pivoted by channel.

Returns experiment lift metrics (CTR_Lift and Value_Lift) for each experiment, with one row per channel.

Returns:

Wide-format summary with columns:

  • Channel: Channel name

  • CTR_Lift <Experiment>: Engagement lift for each experiment

  • Value_Lift <Experiment>: Value lift for each experiment

Return type:

pl.LazyFrame

See also

overall_summary

Summary without channel breakdown.

summarize_experiments

Long-format experiment summary.

Examples

>>> ia.summary_by_channel().collect()
overall_summary() polars.LazyFrame

Get overall experiment summary aggregated across all channels.

Returns experiment lift metrics (CTR_Lift and Value_Lift) for each experiment, aggregated across all data.

Returns:

Single-row wide-format summary with columns:

  • CTR_Lift <Experiment>: Engagement lift for each experiment

  • Value_Lift <Experiment>: Value lift for each experiment

Return type:

pl.LazyFrame

See also

summary_by_channel

Summary with channel breakdown.

summarize_experiments

Long-format experiment summary.

Examples

>>> ia.overall_summary().collect()
summarize_control_groups(by: List[str] | List[polars.Expr] | str | polars.Expr | None = None, drop_internal_cols: bool = True) polars.LazyFrame

Aggregate metrics by control group.

Summarizes impressions, accepts, CTR, and value metrics for each control group, optionally grouped by additional dimensions.

Parameters:
  • by (Optional[Union[List[str], List[pl.Expr], str, pl.Expr]], optional) – Column name(s) or expression(s) to group by in addition to ControlGroup. Default is None (aggregate all data).

  • drop_internal_cols (bool, optional) – If True, drop internal columns prefixed with ‘Pega_’. Default is True.

Returns:

Aggregated metrics with columns: ControlGroup, Impressions, Accepts, CTR, ValuePerImpression, plus any grouping columns.

Return type:

pl.LazyFrame

Examples

>>> ia.summarize_control_groups().collect()
>>> ia.summarize_control_groups(by="Channel").collect()
summarize_experiments(by: List[str] | List[polars.Expr] | str | polars.Expr | None = None) polars.LazyFrame

Summarize experiment metrics comparing test vs control groups.

Computes lift metrics for each defined experiment by comparing test and control group performance.

Note

Returns all default experiments regardless of whether they are active in the data. Experiments without data will have null values for all metrics (Impressions, Accepts, CTR_Lift, Value_Lift, etc.).

Parameters:

by (Optional[Union[List[str], List[pl.Expr], str, pl.Expr]], optional) – Column name(s) or expression(s) to group by. Default is None (aggregate all data).

Returns:

Experiment summary with columns:

  • Experiment: Experiment name

  • Test, Control: Control group names for the experiment

  • Impressions_Test, Impressions_Control: Impression counts (null if not active)

  • Accepts_Test, Accepts_Control: Accept counts (null if not active)

  • CTR_Test, CTR_Control: Click-through rates (null if not active)

  • Control_Fraction: Fraction of impressions in control group

  • CTR_Lift: Engagement lift (null if experiment not active)

  • Value_Lift: Value lift (null if experiment not active)

Return type:

pl.LazyFrame

See also

summarize_control_groups

Lower-level control group aggregation.

overall_summary

Pivoted overall summary.

summary_by_channel

Pivoted summary by channel.

Examples

>>> ia.summarize_experiments().collect()
>>> ia.summarize_experiments(by="Channel").collect()
read_ds_export(filename: str | io.BytesIO, path: str | os.PathLike = '.', verbose: bool = False, **reading_opts) polars.LazyFrame | None

Read in most out of the box Pega dataset export formats Accepts one of the following formats: - .csv - .json - .zip (zipped json or CSV) - .feather - .ipc - .parquet

It automatically infers the default file names for both model data as well as predictor data. If you supply either ‘modelData’ or ‘predictorData’ as the ‘file’ argument, it will search for them. If you supply the full name of the file in the ‘path’ directory, it will import that instead. Since pdstools V3.x, returns a Polars LazyFrame. Simply call .collect() to get an eager frame.

Parameters:
  • filename (Union[str, BytesIO]) – Can be one of the following: - A string with the full path to the file - A string with the name of the file (to be searched in the given path) - A BytesIO object containing the file data (e.g., from an uploaded file in a webapp)

  • path (str, default = '.') – The location of the file

  • verbose (bool, default = True) – Whether to print out which file will be imported

Keyword Arguments:

Any – Any arguments to plug into the scan_* function from Polars.

Returns:

  • pl.LazyFrame – The (lazy) dataframe

  • Examples – >>> df = read_ds_export(filename=’full/path/to/ModelSnapshot.json’) >>> df = read_ds_export(filename=’ModelSnapshot.json’, path=’data/ADMData’) >>> df = read_ds_export(filename=uploaded_file) # Where uploaded_file is a BytesIO object

Return type:

Optional[polars.LazyFrame]

class Prediction(df: polars.LazyFrame, *, query: pdstools.utils.types.QUERY | None = None)

Monitor and analyze Pega Prediction Studio Predictions.

To initialize this class, either 1. Initialize directly with the df polars LazyFrame 2. Use one of the class methods

This class will read in the data from different sources, properly structure them for further analysis, and apply correct typing and useful renaming.

There is also a “namespace” that you can call from this class:

  • .plot contains ready-made plots to analyze the prediction data with

Parameters:
  • df (pl.LazyFrame) – The Polars LazyFrame representation of the prediction data.

  • query (QUERY, optional) – An optional query to apply to the input data. For details, see pdstools.utils.cdh_utils._apply_query().

Examples

>>> pred = Prediction.from_ds_export('/my_export_folder/predictions.zip')
>>> pred = Prediction.from_mock_data(days=70)
>>> from pdstools import Prediction
>>> import polars as pl
>>> pred = Prediction(
         df = pl.scan_parquet('predictions.parquet'),
         query = {"Class":["DATA-DECISION-REQUEST-CUSTOMER-CDH"]}
         )

See also

pdstools.prediction.PredictionPlots

The out of the box plots on the Prediction data

pdstools.utils.cdh_utils._apply_query

How to query the Prediction class and methods

predictions: polars.LazyFrame
plot: PredictionPlots
prediction_validity_expr
classmethod from_ds_export(predictions_filename: os.PathLike | str, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None)

Import from a Pega Dataset Export of the PR_DATA_DM_SNAPSHOTS table.

Parameters:
  • predictions_filename (Union[os.PathLike, str]) – The full path or name (if base_path is given) to the prediction snapshot files

  • base_path (Union[os.PathLike, str], optional) – A base path to provide if predictions_filename is not given as a full path, by default “.”

  • query (Optional[QUERY], optional) – An optional argument to filter out selected data, by default None

Returns:

The properly initialized Prediction class

Return type:

Prediction

Examples

>>> from pdstools import Prediction
>>> pred = Prediction.from_ds_export('predictions.zip', '/my_export_folder')

Note

By default, the dataset export in Infinity returns a zip file per table. You do not need to open up this zip file! You can simply point to the zip, and this method will be able to read in the underlying data.

See also

pdstools.pega_io.File.read_ds_export

More information on file compatibility

pdstools.utils.cdh_utils._apply_query

How to query the Prediction class and methods

classmethod from_s3()

Not implemented yet. Please let us know if you would like this functionality!

Returns:

The properly initialized Prediction class

Return type:

Prediction

classmethod from_dataflow_export()

Import from a data flow, such as the Prediction Studio export. Not implemented yet. Please let us know if you would like this functionality!

Returns:

The properly initialized Prediction class

Return type:

Prediction

classmethod from_pdc(df: polars.LazyFrame, *, return_df=False, query: pdstools.utils.types.QUERY | None = None)

Import from (Pega-internal) PDC data, which is a combination of the PR_DATA_DM_SNAPSHOTS and PR_DATA_DM_ADMMART_MDL_FACT tables.

Parameters:
  • df (pl.LazyFrame) – The Polars LazyFrame containing the PDC data

  • return_df (bool, optional) – If True, returns the processed DataFrame instead of initializing the class, by default False

  • query (Optional[QUERY], optional) – An optional query to apply to the input data, by default None

Returns:

Either the initialized Prediction class or the processed DataFrame if return_df is True

Return type:

Union[Prediction, pl.LazyFrame]

See also

pdstools.utils.cdh_utils._read_pdc

More information on PDC data processing

pdstools.utils.cdh_utils._apply_query

How to query the Prediction class and methods

save_data(path: os.PathLike | str = '.') os.PathLike | None

Cache predictions to a file.

Parameters:

path (Union[os.PathLike, str]) – Where to place the file

Returns:

The path to the cached prediction data file, or None if no data available

Return type:

Optional[os.PathLike]

classmethod from_processed_data(df: polars.LazyFrame)

Load a Prediction from already-processed data (e.g., from cache).

This bypasses the normal data transformation pipeline and directly assigns the data to self.predictions. Use this when loading data that has already been processed by the Prediction class constructor, such as data saved via save_data().

Parameters:

df (pl.LazyFrame) – A LazyFrame containing already-processed prediction data with columns like ‘Positives’, ‘CTR’, ‘Performance’, etc. rather than the raw ‘pyPositives’, ‘pyModelType’, etc.

Returns:

A Prediction instance with the processed data loaded

Return type:

Prediction

Examples

>>> # Load from a cached file
>>> cached_data = pl.scan_parquet('cached_predictions.parquet')
>>> pred = Prediction.from_processed_data(cached_data)
classmethod from_mock_data(days=70)

Create a Prediction instance with mock data for testing and demonstration purposes.

Parameters:

days (int, optional) – Number of days of mock data to generate, by default 70

Returns:

The initialized Prediction class with mock data

Return type:

Prediction

Examples

>>> from pdstools import Prediction
>>> pred = Prediction.from_mock_data(days=30)
>>> pred.plot.performance_trend()
property is_available: bool

Check if prediction data is available.

Returns:

True if prediction data is available, False otherwise

Return type:

bool

property is_valid: bool

Check if prediction data is valid.

A valid prediction meets the criteria defined in prediction_validity_expr, which requires positive and negative responses in both test and control groups.

Returns:

True if prediction data is valid, False otherwise

Return type:

bool

summary_by_channel(custom_predictions: List[List] | None = None, *, start_date: datetime.datetime | None = None, end_date: datetime.datetime | None = None, window: int | datetime.timedelta | None = None, every: str | None = None, debug: bool = False) polars.LazyFrame

Summarize prediction per channel

Parameters:
  • custom_predictions (Optional[List[List]], optional) – Optional list with custom prediction name to channel mappings. Each item should be [PredictionName, Channel, Direction, isMultiChannel]. Defaults to None.

  • start_date (datetime.datetime, optional) – Start date of the summary period. If None (default) uses the end date minus the window, or if both absent, the earliest date in the data

  • end_date (datetime.datetime, optional) – End date of the summary period. If None (default) uses the start date plus the window, or if both absent, the latest date in the data

  • window (int or datetime.timedelta, optional) – Number of days to use for the summary period or an explicit timedelta. If None (default) uses the whole period. Can’t be given if start and end date are also given.

  • every (str, optional) – Optional additional grouping by time period. Format string as in polars.Expr.dt.truncate (https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.dt.truncate.html), for example “1mo”, “1w”, “1d” for calendar month, week day. Defaults to None.

  • debug (bool, optional) – If True, enables debug mode for additional logging or outputs. Defaults to False.

Returns:

Summary across all Predictions as a dataframe with the following fields:

Time and Configuration Fields: - DateRange Min - The minimum date in the summary time range - DateRange Max - The maximum date in the summary time range - Duration - The duration in seconds between the minimum and maximum snapshot times - Prediction: The prediction name - Channel: The channel name - Direction: The direction (e.g., Inbound, Outbound) - ChannelDirectionGroup: Combined Channel/Direction identifier - isValid: Boolean indicating if the prediction data is valid - usesNBAD: Boolean indicating if this is a standard NBAD prediction - isMultiChannel: Boolean indicating if this is a multichannel prediction - ControlPercentage: Percentage of responses in control group - TestPercentage: Percentage of responses in test group

Performance Metrics: - Performance: Weighted model performance (AUC) - Positives: Sum of positive responses - Negatives: Sum of negative responses - Responses: Sum of all responses - Positives_Test: Sum of positive responses in test group - Positives_Control: Sum of positive responses in control group - Positives_NBA: Sum of positive responses in NBA group - Negatives_Test: Sum of negative responses in test group - Negatives_Control: Sum of negative responses in control group - Negatives_NBA: Sum of negative responses in NBA group - CTR: Clickthrough rate (Positives over Positives + Negatives) - CTR_Test: Clickthrough rate for test group (model propensitities) - CTR_Control: Clickthrough rate for control group (random propensities) - CTR_NBA: Clickthrough rate for NBA group (available only when Impact Analyzer is used) - Lift: Lift in Engagement when testing prioritization with just Adaptive Models vs just Random Propensity

Technology Usage Indicators: - usesImpactAnalyzer: Boolean indicating if Impact Analyzer is used

Return type:

pl.LazyFrame

overall_summary(custom_predictions: List[List] | None = None, *, start_date: datetime.datetime | None = None, end_date: datetime.datetime | None = None, window: int | datetime.timedelta | None = None, every: str | None = None, debug: bool = False) polars.LazyFrame

Overall prediction summary. Only valid prediction data is included.

Parameters:
  • custom_predictions (Optional[List[List]], optional) – Optional list with custom prediction name to channel mappings. Each item should be [PredictionName, Channel, Direction, isMultiChannel]. Defaults to None.

  • start_date (datetime.datetime, optional) – Start date of the summary period. If None (default) uses the end date minus the window, or if both absent, the earliest date in the data

  • end_date (datetime.datetime, optional) – End date of the summary period. If None (default) uses the start date plus the window, or if both absent, the latest date in the data

  • window (int or datetime.timedelta, optional) – Number of days to use for the summary period or an explicit timedelta. If None (default) uses the whole period. Can’t be given if start and end date are also given.

  • every (str, optional) – Optional additional grouping by time period. Format string as in polars.Expr.dt.truncate (https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.dt.truncate.html), for example “1mo”, “1w”, “1d” for calendar month, week day. Defaults to None.

  • debug (bool, optional) – If True, enables debug mode for additional logging or outputs. Defaults to False.

Returns:

Summary across all Predictions as a dataframe with the following fields:

Time and Configuration Fields: - DateRange Min - The minimum date in the summary time range - DateRange Max - The maximum date in the summary time range - Duration - The duration in seconds between the minimum and maximum snapshot times - ControlPercentage: Weighted average percentage of control group responses - TestPercentage: Weighted average percentage of test group responses - usesNBAD: Boolean indicating if any of the predictions is a standard NBAD prediction

Performance Metrics: - Performance: Weighted average performance across all valid channels - Positives Inbound: Sum of positive responses across all valid inbound channels - Positives Outbound: Sum of positive responses across all valid outbound channels - Responses Inbound: Sum of all responses across all valid inbound channels - Responses Outbound: Sum of all responses across all valid outbound channels - Overall Lift: Weighted average lift across all valid channels - Minimum Negative Lift: The lowest negative lift value found

Channel Statistics: - Number of Valid Channels: Count of unique valid channel/direction combinations - Channel with Minimum Negative Lift: Channel with the lowest negative lift value

Technology Usage Indicators: - usesImpactAnalyzer: Boolean indicating if any channel uses Impact Analyzer

Return type:

pl.LazyFrame

default_predictor_categorization(x: str | polars.Expr = pl.col('PredictorName')) polars.Expr

Function to determine the ‘category’ of a predictor.

It is possible to supply a custom function. This function can accept an optional column as input And as output should be a Polars expression. The most straight-forward way to implement this is with pl.when().then().otherwise(), which you can chain.

By default, this function returns “Primary” whenever there is no ‘.’ anywhere in the name string, otherwise returns the first string before the first period

Parameters:

x (Union[str, pl.Expr], default = pl.col('PredictorName')) – The column to parse

Return type:

polars.Expr

cdh_sample(query: pdstools.utils.types.QUERY | None = None) pdstools.adm.ADMDatamart.ADMDatamart

Import a sample dataset from the CDH Sample application

Parameters:

query (Optional[QUERY], optional) – An optional query to apply to the data, by default None

Returns:

The ADM Datamart class populated with CDH Sample data

Return type:

ADMDatamart

sample_value_finder(threshold: float | None = None) pdstools.valuefinder.ValueFinder.ValueFinder

Import a sample dataset of a Value Finder simulation

This simulation was ran on a stock CDH Sample system.

Parameters:

threshold (Optional[float], optional) – Optional override of the propensity threshold in the system, by default None

Returns:

The Value Finder class populated with the Value Finder simulation data

Return type:

ValueFinder

show_versions(print_output: Literal[True] = True) None
show_versions(print_output: Literal[False] = False) str

Get a list of currently installed versions of pdstools and its dependencies.

Parameters:
  • print_output (bool, optional) – If True, print the version information to stdout. If False, return the version information as a string. Default is True.

  • include_dependencies (bool, optional) – If True, include the versions of dependencies in the output. If False, only include the pdstools version and system information. Default is True.

Returns:

Version information as a string if print_output is False, else None.

Return type:

Optional[str]

Examples

>>> from pdstools import show_versions
>>> show_versions()
--- Version info ---
pdstools: 4.0.0-alpha
Platform: macOS-14.7-arm64-arm-64bit
Python: 3.12.4 (main, Jun  6 2024, 18:26:44) [Clang 15.0.0 (clang-1500.3.9.4)]

— Dependencies — typing_extensions: 4.12.2 polars>=1.9: 1.9.0

— Dependency group: adm — plotly>=5.5.0: 5.24.1

— Dependency group: api — pydantic: 2.9.2 httpx: 0.27.2

class ValueFinder(df: polars.LazyFrame, *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None)

Analyze the Value Finder dataset for detailed insights

Parameters:
  • df (polars.LazyFrame)

  • query (Optional[pdstools.utils.types.QUERY])

  • n_customers (Optional[int])

  • threshold (Optional[float])

df: polars.LazyFrame
n_customers: int
nbad_stages = ['Eligibility', 'Applicability', 'Suitability', 'Arbitration']
aggregates
plot
classmethod from_ds_export(filename: str | None = None, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None)
Parameters:
  • filename (Optional[str])

  • base_path (Union[os.PathLike, str])

  • query (Optional[pdstools.utils.types.QUERY])

  • n_customers (Optional[int])

  • threshold (Optional[float])

classmethod from_dataflow_export(files: Iterable[str] | str, *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: os.PathLike | str = 'cache')
Parameters:
  • files (Union[Iterable[str], str])

  • query (Optional[pdstools.utils.types.QUERY])

  • n_customers (Optional[int])

  • threshold (Optional[float])

  • cache_file_prefix (str)

  • extension (Literal['json'])

  • compression (Literal['gzip'])

  • cache_directory (Union[os.PathLike, str])

set_threshold(new_threshold: float | None = None)
Parameters:

new_threshold (Optional[float])

property threshold
save_data(path: os.PathLike | str = '.') pathlib.Path | None

Cache the pyValueFinder dataset to a Parquet file

Parameters:

path (str) – Where to place the file

Returns:

The paths to the model and predictor data files

Return type:

(Optional[Path], Optional[Path])