pdstools¶
Pega Data Scientist Tools Python library
Submodules¶
Classes¶
Monitor and analyze ADM data from the Pega Datamart. |
|
Monitor Pega Prediction Studio Predictions |
|
Analyze the Value Finder dataset for detailed insights |
Functions¶
|
Read in most out of the box Pega dataset export formats |
|
Function to determine the 'category' of a predictor. |
|
Import a sample dataset from the CDH Sample application |
|
Import a sample dataset of a Value Finder simulation |
Get a list of currently installed versions of pdstools and its dependencies. |
Package Contents¶
- class ADMDatamart(model_df: polars.LazyFrame | None = None, predictor_df: polars.LazyFrame | None = None, *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True)¶
Monitor and analyze ADM data from the Pega Datamart.
To initialize this class, either 1. Initialize directly with the model_df and predictor_df polars LazyFrames 2. Use one of the class methods: from_ds_export, from_s3 or from_dataflow_export
This class will read in the data from different sources, properly structure them from further analysis, and apply correct typing and useful renaming.
There is also a few “namespaces” that you can call from this class:
.plot contains ready-made plots to analyze the data with
.aggregates contains mostly internal data aggregations queries
.agb contains analysis utilities for Adaptive Gradient Boosting models
.generate leads to some ready-made reports, such as the Health Check
.bin_aggregator allows you to compare the bins across various models
- Parameters:
model_df (pl.LazyFrame, optional) – The Polars LazyFrame representation of the model snapshot table.
predictor_df (pl.LazyFrame, optional) – The Polars LazyFrame represenation of the predictor binning table.
query (QUERY, optional) – An optional query to apply to the input data. For details, see
pdstools.utils.cdh_utils._apply_query()
.extract_pyname_keys (bool, default = True) – Whether to extract extra keys from the pyName column. In older Pega versions, this contained pyTreatment among other (customizable) fields. By default True
Examples
>>> from pdstools import ADMDatamart >>> from glob import glob >>> dm = ADMDatamart( model_df = pl.scan_parquet('models.parquet'), predictor_df = pl.scan_parquet('predictors.parquet') query = {"Configuration":["Web_Click_Through"]} ) >>> dm = ADMDatamart.from_ds_export(base_path='/my_export_folder') >>> dm = ADMDatamart.from_s3("pega_export") >>> dm = ADMDatamart.from_dataflow_export(glob("data/models*"), glob("data/preds*"))
Note
This class depends on two datasets:
pyModelSnapshots corresponds to the model_data attribute
pyADMPredictorSnapshots corresponds to the predictor_data attribute
For instructions on how to download these datasets, please refer to the following article: https://docs.pega.com/bundle/platform/page/platform/decision-management/exporting-monitoring-database.html
See also
pdstools.adm.Plots
The out of the box plots on the Datamart data
pdstools.adm.Reports
Methods to generate the Health Check and Model Report
pdstools.utils.cdh_utils._apply_query
How to query the ADMDatamart class and methods
- aggregates: pdstools.adm.Aggregates.Aggregates¶
- generate: pdstools.adm.Reports.Reports¶
- cdh_guidelines: pdstools.adm.CDH_Guidelines.CDHGuidelines¶
- bin_aggregator: pdstools.adm.BinAggregator.BinAggregator¶
- classmethod from_ds_export(model_filename: str | None = None, predictor_filename: str | None = None, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True)¶
Import the ADMDatamart class from a Pega Dataset Export
- Parameters:
model_filename (Optional[str], optional) – The full path or name (if base_path is given) to the model snapshot files, by default None
predictor_filename (Optional[str], optional) – The full path or name (if base_path is given) to the predictor binning snapshot files, by default None
base_path (Union[os.PathLike, str], optional) – A base path to provide so that we can automatically find the most recent files for both the model and predictor snapshots, if model_filename and predictor_filename are not given as full paths, by default “.”
query (Optional[QUERY], optional) – An optional argument to filter out selected data, by default None
extract_pyname_keys (bool, optional) – Whether to extract additional keys from the pyName column, by default True
- Returns:
The properly initialized ADMDatamart class
- Return type:
Examples
>>> from pdstools import ADMDatamart
>>> # To automatically find the most recent files in the 'my_export_folder' dir: >>> dm = ADMDatamart.from_ds_export(base_path='/my_export_folder')
>>> # To specify individual files: >>> dm = ADMDatamart.from_ds_export( model_df='/Downloads/model_snapshots.parquet', predictor_df = '/Downloads/predictor_snapshots.parquet' )
Note
By default, the dataset export in Infinity returns a zip file per table. You do not need to open up this zip file! You can simply point to the zip, and this method will be able to read in the underlying data.
See also
pdstools.pega_io.File.read_ds_export
More information on file compatibility
pdstools.utils.cdh_utils._apply_query
How to query the ADMDatamart class and methods
- classmethod from_s3()¶
Not implemented yet. Please let us know if you would like this functionality!
- classmethod from_dataflow_export(model_data_files: Iterable[str] | str, predictor_data_files: Iterable[str] | str, *, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: os.PathLike | str = 'cache')¶
Read in data generated by a data flow, such as the Prediction Studio export.
Dataflows are able to export data from and to various sources. As they are meant to be used in production, they are highly resiliant. For every partition and every node, a dataflow will output a small json file every few seconds. While this is great for production loads, it can be a bit more tricky to read in the data for smaller-scale and ad-hoc analyses.
This method aims to make the ingestion of such highly partitioned data easier. It reads in every individual small json file that the dataflow has output, and caches them to a parquet file in the cache_directory folder. As such, if you re-run this method later with more data added since the last export, we will not read in from the (slow) dataflow files, but rather from the (much faster) cache.
- Parameters:
model_data_files (Union[Iterable[str], str]) – A list of files to read in as the model snapshots
predictor_data_files (Union[Iterable[str], str]) – A list of files to read in as the predictor snapshots
query (Optional[QUERY], optional) – A, by default None
extract_pyname_keys (bool, optional) – Whether to extract extra keys from the pyName column, by default True
cache_file_prefix (str, optional) – An optional prefix for the cache files, by default “”
extension (Literal["json"], optional) – The extension of the source data, by default “json”
compression (Literal["gzip"], optional) – The compression of the source files, by default “gzip”
cache_directory (Union[os.PathLike, str], optional) – Where to store the cached files, by default “cache”
- Returns:
An initialized instance of the datamart class
- Return type:
Examples
>>> from pdstools import ADMDatamart >>> import glob >>> dm = ADMDatamart.from_dataflow_export(glob("data/models*"), glob("data/preds*"))
See also
pdstools.utils.cdh_utils._apply_query
How to query the ADMDatamart class and methods
glob
Makes creating lists of files much easier
- _validate_model_data(df: polars.LazyFrame | None, query: pdstools.utils.types.QUERY | None = None, extract_pyname_keys: bool = True) polars.LazyFrame | None ¶
Internal method to validate model data
- Parameters:
df (Optional[polars.LazyFrame])
query (Optional[pdstools.utils.types.QUERY])
extract_pyname_keys (bool)
- Return type:
Optional[polars.LazyFrame]
- _validate_predictor_data(df: polars.LazyFrame | None) polars.LazyFrame | None ¶
Internal method to validate predictor data
- Parameters:
df (Optional[polars.LazyFrame])
- Return type:
Optional[polars.LazyFrame]
- apply_predictor_categorization(df: polars.LazyFrame | None = None, categorization: polars.Expr | Callable[Ellipsis, polars.Expr] = cdh_utils.default_predictor_categorization)¶
Apply a new predictor categorization to the datamart tables
In certain plots, we use the predictor categorization to indicate what ‘kind’ a certain predictor is, such as IH, Customer, etc. Call this method with a custom Polars Expression (or a method that returns one) - and it will be applied to the predictor data (and the combined dataset too).
For a reference implementation of a custom predictor categorization, refer to pdstools.utils.cdh_utils.default_predictor_categorization.
- Parameters:
df (Optional[pl.LazyFrame], optional) – A Polars Lazyframe to apply the categorization to. If not provided, applies it over the predictor data and combined datasets. By default, None
categorization (Union[pl.Expr, Callable[..., pl.Expr]]) – A polars Expression (or method that returns one) to apply the mapping with. Should be based on Polars’ when.then.otherwise syntax. By default, pdstools.utils.cdh_utils.default_predictor_categorization
See also
pdstools.utils.cdh_utils.default_predictor_categorization
The default method
Examples
>>> dm = ADMDatamart(my_data) #uses the OOTB predictor categorization
>>> dm.apply_predictor_categorization(categorization=pl.when( >>> pl.col("PredictorName").cast(pl.Utf8).str.contains("Propensity") >>> ).then(pl.lit("External Model") >>> ).otherwise(pl.lit("Adaptive Model)")
>>> # Now, every subsequent plot will use the custom categorization
- save_data(path: os.PathLike | str = '.', selected_model_ids: List[str] | None = None) Tuple[pathlib.Path | None, pathlib.Path | None] ¶
Caches model_data and predictor_data to files.
- property unique_channels¶
A consistently ordered set of unique channels in the data
Used for making the color schemes in different plots consistent
- property unique_configurations¶
A consistently ordered set of unique configurations in the data
Used for making the color schemes in different plots consistent
- property unique_channel_direction¶
A consistently ordered set of unique channel+direction combos in the data Used for making the color schemes in different plots consistent
- property unique_configuration_channel_direction¶
A consistently ordered set of unique configuration+channel+direction Used for making the color schemes in different plots consistent
- property unique_predictor_categories¶
A consistently ordered set of unique predictor categories in the data Used for making the color schemes in different plots consistent
- read_ds_export(filename: str | io.BytesIO, path: str | os.PathLike = '.', verbose: bool = False, **reading_opts) polars.LazyFrame | None ¶
Read in most out of the box Pega dataset export formats Accepts one of the following formats: - .csv - .json - .zip (zipped json or CSV) - .feather - .ipc - .parquet
It automatically infers the default file names for both model data as well as predictor data. If you supply either ‘modelData’ or ‘predictorData’ as the ‘file’ argument, it will search for them. If you supply the full name of the file in the ‘path’ directory, it will import that instead. Since pdstools V3.x, returns a Polars LazyFrame. Simply call .collect() to get an eager frame.
- Parameters:
filename (Union[str, BytesIO]) – Can be one of the following: - A string with the full path to the file - A string with the name of the file (to be searched in the given path) - A BytesIO object containing the file data (e.g., from an uploaded file in a webapp)
path (str, default = '.') – The location of the file
verbose (bool, default = True) – Whether to print out which file will be imported
- Keyword Arguments:
Any – Any arguments to plug into the scan_* function from Polars.
- Returns:
pl.LazyFrame – The (lazy) dataframe
Examples – >>> df = read_ds_export(filename=’full/path/to/ModelSnapshot.json’) >>> df = read_ds_export(filename=’ModelSnapshot.json’, path=’data/ADMData’) >>> df = read_ds_export(filename=uploaded_file) # Where uploaded_file is a BytesIO object
- Return type:
Optional[polars.LazyFrame]
- class Prediction(df: polars.LazyFrame)¶
Monitor Pega Prediction Studio Predictions
- Parameters:
df (polars.LazyFrame)
- predictions: polars.LazyFrame¶
- plot: PredictionPlots¶
- prediction_validity_expr¶
- cdh_guidelines¶
- static from_mock_data(days=70)¶
- summary_by_channel(custom_predictions: List[List] | None = None, by_period: str = None) polars.LazyFrame ¶
Summarize prediction per channel
- Parameters:
custom_predictions (Optional[List[CDH_Guidelines.NBAD_Prediction]], optional) – Optional list with custom prediction name to channel mappings. Defaults to None.
by_period (str, optional) – Optional grouping by time period. Format string as in polars.Expr.dt.truncate (https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.dt.truncate.html), for example “1mo”, “1w”, “1d” for calendar month, week day. If provided, creates a new Period column with the truncated date/time. Defaults to None.
- Returns:
Dataframe with prediction summary (validity, numbers in test, control etc.)
- Return type:
pl.LazyFrame
- overall_summary(custom_predictions: List[List] | None = None, by_period: str = None) polars.LazyFrame ¶
Overall prediction summary. Only valid prediction data is included.
- Parameters:
custom_predictions (Optional[List[CDH_Guidelines.NBAD_Prediction]], optional) – Optional list with custom prediction name to channel mappings. Defaults to None.
by_period (str, optional) – Optional grouping by time period. Format string as in polars.Expr.dt.truncate (https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.dt.truncate.html), for example “1mo”, “1w”, “1d” for calendar month, week day. If provided, creates a new Period column with the truncated date/time. Defaults to None.
- Returns:
Summary across all valid predictions as a dataframe
- Return type:
pl.LazyFrame
- default_predictor_categorization(x: str | polars.Expr = pl.col('PredictorName')) polars.Expr ¶
Function to determine the ‘category’ of a predictor.
It is possible to supply a custom function. This function can accept an optional column as input And as output should be a Polars expression. The most straight-forward way to implement this is with pl.when().then().otherwise(), which you can chain.
By default, this function returns “Primary” whenever there is no ‘.’ anywhere in the name string, otherwise returns the first string before the first period
- Parameters:
x (Union[str, pl.Expr], default = pl.col('PredictorName')) – The column to parse
- Return type:
polars.Expr
- cdh_sample(query: pdstools.utils.types.QUERY | None = None) pdstools.adm.ADMDatamart.ADMDatamart ¶
Import a sample dataset from the CDH Sample application
- Parameters:
query (Optional[QUERY], optional) – An optional query to apply to the data, by default None
- Returns:
The ADM Datamart class populated with CDH Sample data
- Return type:
- sample_value_finder(threshold: float | None = None) pdstools.valuefinder.ValueFinder.ValueFinder ¶
Import a sample dataset of a Value Finder simulation
This simulation was ran on a stock CDH Sample system.
- Parameters:
threshold (Optional[float], optional) – Optional override of the propensity threshold in the system, by default None
- Returns:
The Value Finder class populated with the Value Finder simulation data
- Return type:
- show_versions(print_output: Literal[True] = True) None ¶
- show_versions(print_output: Literal[False] = False) str
Get a list of currently installed versions of pdstools and its dependencies.
- Parameters:
print_output (bool, optional) – If True, print the version information to stdout. If False, return the version information as a string. Default is True.
- Returns:
Version information as a string if print_output is False, else None.
- Return type:
Optional[str]
Examples
>>> from pdstools import show_versions >>> show_versions() --- Version info --- pdstools: 4.0.0-alpha Platform: macOS-14.7-arm64-arm-64bit Python: 3.12.4 (main, Jun 6 2024, 18:26:44) [Clang 15.0.0 (clang-1500.3.9.4)]
— Dependencies — typing_extensions: 4.12.2 polars>=1.9: 1.9.0
— Dependency group: adm — plotly>=5.5.0: 5.24.1
— Dependency group: api — pydantic: 2.9.2 httpx: 0.27.2
- class ValueFinder(df: polars.LazyFrame, *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None)¶
Analyze the Value Finder dataset for detailed insights
- Parameters:
- df: polars.LazyFrame¶
- nbad_stages = ['Eligibility', 'Applicability', 'Suitability', 'Arbitration']¶
- aggregates¶
- plot¶
- classmethod from_ds_export(filename: str | None = None, base_path: os.PathLike | str = '.', *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None)¶
- Parameters:
filename (Optional[str])
base_path (Union[os.PathLike, str])
query (Optional[pdstools.utils.types.QUERY])
n_customers (Optional[int])
threshold (Optional[float])
- classmethod from_dataflow_export(files: Iterable[str] | str, *, query: pdstools.utils.types.QUERY | None = None, n_customers: int | None = None, threshold: float | None = None, cache_file_prefix: str = '', extension: Literal['json'] = 'json', compression: Literal['gzip'] = 'gzip', cache_directory: os.PathLike | str = 'cache')¶
- property threshold¶
- save_data(path: os.PathLike | str = '.') pathlib.Path | None ¶
Cache the pyValueFinder dataset to a Parquet file
- Parameters:
path (str) – Where to place the file
- Returns:
The paths to the model and predictor data files
- Return type:
(Optional[Path], Optional[Path])