pdstools.valuefinder.Plots

Attributes

Classes

Module Contents

logger
COLORSCALE_TYPES
Figure
T
P
class Plots(vf: pdstools.valuefinder.ValueFinder.ValueFinder)

Bases: pdstools.utils.namespaces.LazyNamespace

Parameters:

vf (pdstools.valuefinder.ValueFinder.ValueFinder)

dependencies = ['plotly']
vf
funnel_chart(by: str, query: pdstools.utils.types.QUERY | None = None, return_df: Literal[False] = False) Figure
funnel_chart(by: str, query: pdstools.utils.types.QUERY | None = None, return_df: Literal[True] = True) polars.LazyFrame
propensity_distribution(sample_size: int = 10000) Figure
Parameters:

sample_size (int)

Return type:

Figure

propensity_threshold(sample_size: int = 10000, stage='Eligibility') Figure
Parameters:

sample_size (int)

Return type:

Figure

_get_thresholds(thresholds: Iterable[float] | None = None, quantiles: Iterable[float] | None = None, default: Iterable[float] | None = None) Iterable[float]
Parameters:
  • thresholds (Optional[Iterable[float]])

  • quantiles (Optional[Iterable[float]])

  • default (Optional[Iterable[float]])

Return type:

Iterable[float]

pie_charts(*, thresholds: Iterable[float] | None = None, quantiles: Iterable[float] | None = None, rounding: int = 3)
Parameters:
  • thresholds (Optional[Iterable[float]])

  • quantiles (Optional[Iterable[float]])

  • rounding (int)

distribution_per_threshold(*, thresholds: Iterable[float] | None = None, quantiles: Iterable[float] | None = None, rounding: int = 3)
Parameters:
  • thresholds (Optional[Iterable[float]])

  • quantiles (Optional[Iterable[float]])

  • rounding (int)